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The method of characteristics is used to calculate numerical solutions for the 
head-on collision of a shock wave with a centred rarefaction wave in the one- 
dimensional unsteady flow of a perfect gas. It is found that, for sufficiently 
strong shock waves, the rate of increase in the strength of the shock as it propa- 
gates through the rarefaction is so great that the temperature behind the shock 
reaches extreme values. 

1. Introduction 
Various aspects of the head-on collision of a shock and a rarefaction wave have 

been the subject of a number of studies. The general method of Courant & 
Friedrichs ( 1948) for the solution of wave-interaction problems in one-dimensional 
flow may be applied to this problem if the rarefactionis regarded as a discontinuity 
and, for weak waves, the results of this method have been compared with experi- 
ment by Gould (1952). Rosciszewski (1960) applied the characteristics rule of 
Whitham (1958) to the problem and this method has also been used by Greenspan 
& Butler (1962), who examined the behaviour of the shock as it nears the gas- 
vacuum interface of a complete rarefaction wave. 

All of these investigations show that the strength of the shock increases as it 
propagates through the rarefaction and, in the limit, Greenspan & Butler show 
that the strength becomes infinite at the interface where the gas pressure and 
temperature drop to zero. However, because of the conflicting effects of the 
increase in the temperature and pressure ratios across the shock as its strength 
increases and the fall of the temperature and pressure in front of the shock in the 
rarefaction, it is not clear whether the temperature and pressure behind the shock 
increase or decrease as i t  propagates through the rarefaction. 

The previous investigations have not resolved this point and the study by the 
author (Bird 1961) of the related problem of the motion of a shock wave through 
a region of non-uniform density indicates that the approximate methods cannot 
be trusted to give reliable results for strong waves. Therefore, the method-of- 
characteristics computer program which was developed for the previous study 
has been used to calculate complete numerical solutions of the flow for perfect 
gases. 
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2. Description and assessment of methods of analysis 
The collision of the shock wave with the rarefaction wave is represented in 

figure 1 in the distance-time (x, t)-plane. The shock wave of constant shock Mach 
number? Ms0 is moving through a stationary gas of temperature To and pressure 
po and meets the head of the rarefaction a t  the point A, which is located at  a 

distance xo upstream of the centre 0 of the rarefaction. The shock Mach number 
at any point in the rarefaction is denoted by M,, the flow conditions in the rare- 
faction immediately in front of the shock are denoted by the subscript 1 and the 
conditions immediately behind the shock are denoted by the subscript 2. 

In  order to obtain an exact numerical solution of the flow for a perfect gas, the 
method of characteristics must be used to construct the flow in the non-isentropic 
region between the non-uniform portion of shock AC and the particle path AB, 
the flow behind AB being of the simple wave type. A digital computer program to 
construct the flow in such a region has been described by the author (Bird 1961) 
and its adaption to the present problem required only a change in the boundary 
conditions in front of the shock. 

In  figure 2, the method-of-characteristics result for a typical case is compared 
with Rosciszewski’s solution which effectively ignores the effects of the positive 
characteristics in the region ABC. The solution given by the configuration of the 
wave polars in the pressure-flow velocity plane is also shown. This solution which, 
as stated earlier, regards the rarefaction as a discontinuity will be called the 
asymptotic solution because it must give the correct result for the ultimate 

t The shock Mach number is defined as the ratio of the speed of the shock relative to the 
gas in front of it to the speed of sound in this gas. 
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strength of the waves when the shock meets an incomplete rarefaction followed 
by constant conditions. The approximate methods give good results for weak 
rarefaction waves, but diverge widely for more complete rarefactions. The exact 
characteristics result is closer to Rosciszewski's solution than to the asymptotic 
solution, although the difference is such that the approximate methods cannot 
be considered fully satisfactory. 

allall 

FIGURE 2. Rate of increase of shock strength ( y  = 5); -, characteristics; 
- .-, Rosciszewski; ---, asymptotic. 

3. Results and discussion 
Figure 2 shows the shock Mach number as a function of the speed of sound in the 

rarefaction for a number of values of the initial shock Mach number and a perfect 
gas of y = f .  For very strong waves the curves, which are plotted against logar- 
ithmic axes, become dmost linear which indicates that, for a given M,, and a,, 

M, oc a,". 

A careful examination of the data indicates that the exponent n is not quite 
constant over the region of interest. For instance, the results for M, = 4 indicate 
that n = 1.94 in the region where M, = lo2 to lo3 while, for H,, = 16, the corre- 
sponding value is 1.96. Also, the initial value of the exponent is 2-03 for M,, = lo2 
and 2-05 for M,, = lo3. However, for the purposes of this discussion, the value of 
the exponent will be taken as that given by the initial slope of the curve for 
Ms0 = 100 and table 1 presents some results for various values of the specific heat 
ratio. 
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For strong shock waves, the speed of sound ratio is proportional to the shock 
Mach number. Therefore, a,/al cc urn  and T, cc ai2(n-1). Therefore the tempera- 
ture behind the shock increases as long as n > 1 and this is the case for strong 
shocks in perfect gases with any practical value of y. 

The variation of T, with p l  rather than u1 is also significant and it is easily 

shown that T, cc pi(y-1)(%-1)/r. 

Therefore, while the gases with a low value of the specific-heat ratio produce a 
higher temperature for a given fall in speed of sound in the rarefaction, the 
specific-heat ratio has little effect on the temperature which is produced for a 
given pressure drop. 

- Y 
Y - l n  - (Y - 1) (72- 1) n -2(n-1)  -~ Y - l ( n - 1 )  l-- 

Y Y 72- y(n- 1) 
5 

7 
3 - 1.68 - 1.36 - 0.272 0.327 - 0.840 
5 - 2.03 - 2.06 - 0.294 0-420 - 0.704 
- 
- 

- 2.60 - 3.20 - 0.290 0.494 - 0.557 
i7 1 9  - 3.50 - 5.00 - 0.263 0-631 - 0.423 

__ 1 1  

TABLE 1 

The pressure ratio across strong shock waves is proportional to M:, so that 

and 

Table 1 also presents values for this exponent and it is seen that it is always 
positive so that, in contrast to the temperature, the pressure behind the shock 
wave always falls. 

Finally, the rate of change of temperature behind the shock is given in terms 
of the pressure variation a t  this point by 

T2 cc p,(r-l)(n-l)/{n-r(n-U). 

It is seen from table 1 that, for given Ms0, To and po,  the gas with the largest 
specific heat ratio produces the highest temperature at a given pressure. 

Figure 2 shows that, for weaker shock waves, the rate of increase of the shock 
Mach number with the fall in the speed of sound in the rarefaction is less than that 
for the very strong waves and the behaviour of the temperature behind weaker 
waves is still in doubt. This point is clarified in figure 3 which shows how the 
temperature behind the shock changes with distance. Although the temperature 
behind waves which are initially very weak continues to fall throughout the 
region of practical interest, there is a dramatic change in the behaviour for Ma0 
about 2 and, for Mso > 4, the temperature increases almost from the start of the 
interaction. 

The behaviour of the temperature and pressure in front of and behind the shock 
as a function of the distance from the start of the interaction is shown in figure 4, 
for an initial shock Mach number of 4 and for several values of the specific-heat 
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ratio. The distance to the high temperature region from the start of the interaction 
decreases for increasing specific-heat ratio and the monatomic gas exhibits the 
most favourable over-all behaviour. As the shock becomes stronger, it moves 
more and more rapidly through the remaining part of the rarefaction and the 
rate of increase of the temperature behind the shock with distance becomes 
extremely large. In  fact, the curves of figure 4 probably give a good indication of 
the point at which the shock would overtake the gas-vacuum interface. 

FIGURE 3. Temperature behind shock-wave propagating through rarefaction (y  = 9). 

In  a practical flow the rarefaction would be of finite width and, since the 
temperature behind the shock a t  the tail of the rarefaction is much higher than 
the temperature behind the shock when it reaches its asymptotic strength, it is 
important to know the rate at which the shock Machnumber falls to its asymptotic 
value. This importance is accentuated by the very short distance in which the 
major part of the temperature rise takes place. The typical result of figure 5 ,  
which is for a shock of nils = 4 propagating through a rarefaction to al/ao = 0.01 
followed by a uniform flow region, shows that the rate of decrease of the shock 
Mach number beyond the rarefaction is very slow compared with the rate of 
increase near the tail of the rarefaction. In  a practical flow, the expansion would 
be to a very small but finite pressure and the tail of the rarefaction would be 
preceded by a shock wave, as in a normal shock-tube flow, and the pressure a t  the 
tail of the rarefaction would be higher than the initial pressure. However, this 
shock would be quickly overtaken by the main shock and the net result would be 
similar to that which would be produced if there was a rarefaction right down to 
the initial pressure. 

As an example of the extreme conditions that are predicted by the calculations 
for perfect gases, consider a shock tube with a monatomic gas a t  288°K and 
l a t m  in the low-pressure section and a second diaphragm dividing the low- 
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FIGURE 4. Temperature and pressure profiles in typical interactions (MS0 = 4). 
(a )  y = 9; (b )  y = 8; ( c )  y = 9. 
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pressure section from a vacuum. A shock of Mach number 16 is generated in the 
low-pressure gas and the second diaphragm is broken so that the shock intersects 
the head of the rarefaction a t  a distance xo upstream of the diaphragm station. 
Then, at a distance 3.436 xo downstream of this station, a shock of Mach number 

- 
rr" 

100 - - 
Asymptotic value -------- 

- 
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FIGURE 5. Decay in strength of shock wave after passing through an 
incomplete rarefaction wave. 

28,520 would be moving into a gas of temperature 0.032OK and pressure 
1.35 x 10-lOatm which would produce a temperature and pressure behind the 
shock of 8.25 x lo6 O K  and 0.137 atm respectively. 

Real gas effects would, of course, drastically modify the results, but the 
predictions of the perfect gas theory are such that this flow may be expected to 
provide an effective and comparatively simple method of generating very high 
temperatures. 
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